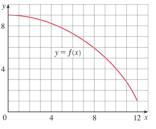
4.1 Videos Guide

4.1a


• Introduction to the concept of areas and distances

4.1b

Exercise:

- (a) Use six rectangles to find estimates of each type for the area under the given graph of f from x = 0 to x = 12.
 - (i) L_6 (sample points are left endpoints)
 - (ii) R_6 (sample points are right endpoints)
 - (iii) M_6 (sample points are midpoints)
 - (b) Is L_6 an underestimate or overestimate of the true area?
 - (c) Is R_6 an underestimate or overestimate of the true area?

(d) Which of the numbers L_6 , R_6 , or M_6 gives the best estimate? Explain.

4.1c

Definition: (area)

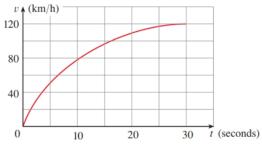
• The area A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles:

$$A = \lim_{n \to \infty} R_n = \lim_{n \to \infty} [f(x_1)\Delta x + f(x_2)\Delta x + \dots + f(x_n)\Delta x]$$

ALSO $A = \lim_{n \to \infty} L_n = \lim_{n \to \infty} [f(x_0)\Delta x + f(x_1)\Delta x + \dots + f(x_{n-1})\Delta x],$
where R_n indicates rectangles whose heights are given using the rig

where R_n indicates rectangles whose heights are given using the right endpoints of subintervals and L_n uses left endpoints of subintervals

Exercises:


Use the definition of area to express the area under *f*.
f(*x*) = *x*² + √1 + 2*x*, 4 ≤ *x* ≤ 7

4.1d

• Determine a region whose area is equal to the given limit. Do not evaluate the limit.

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{3}{n} \sqrt{1 + \frac{3i}{n}}$$

• The velocity graph of a car accelerating from rest to a speed of 120 km/h over a period of 30 seconds is shown. Estimate the distance traveled during this period.

